坚果加速器破解版免费
The Smolka lab investigates signaling networks involved in genome maintenance and cell cycle control. We use mass spectrometry technologies, in combination with genetic and biochemical approaches, to elucidate the organization, dynamics and regulation of DNA damage signaling in yeast and mammals. Scroll down to learn more about our research projects.
WE ARE HIRING POSTDOCTORAL SCIENTISTS
Interested applicants: Please email CV to mbs266@cornell.edu
Recent Smolka Lab News:
|
Research Focus
The integrity of our genome is especially at risk while it is being replicated. During DNA replication, the DNA must be “unzipped”, giving rise to structures known as replication forks. While traversing the genome, replication forks often encounter obstacles to their progression, including DNA lesions, hard-to-replicate sequences, transcription intermediates, or protein-DNA complexes. These encounters are potential sources of DNA breaks, chromosomal rearrangements and aneuploidy, all of which are hallmarks and drivers of cancer. Proper control of replication fork progression is therefore essential for genome integrity and cancer avoidance. Paradoxically, numerous anti-cancer agents such as topoisomerase inhibitors, DNA crosslinkers and DNA alkylators, kill cancer cells by impairing the regulated progression of the replication machinery and inducing replication stress. Our laboratory studies how cells sense, signal and prevent DNA replication stress to ensure faithful genome replication. We seek a deep mechanistic and integrated understanding of the replicative stress response and its implications for tumorigenesis and improved cancer treatment.
NBA2K 17需要用加速器么?用什么加速器比较好 - Sohu:2021-9-10 · 那么玩NBA2K 17用什么加速器比较好 呢?虽然现在市场上加速器品牌繁多,但是真正起到加速作用的却不多。 玲珑玲珑是国内唯一一家使用独享高速网络的加速器厂商,保证玩家全天低延迟不丢包的游戏,让玩家愉快的玩耍。绑定手机号可众获得 .... We are investigating how the actions of kinases are translated into a coordinated cellular response that ensures proper completion of genome replication. As shown in the figure below, our recent work using budding yeast as a model organism has uncovered how phosphorylation events mediated by CDK and checkpoint kinases form a “code” of combinatorial protein interactions that lead to distinct functional outputs, therefore allowing timely coordination of DNA replication, cell cycle and DNA repair (1-3). Central to this combinatorial mode of regulation is the multi-BRCT domain scaffold Dpb11, capable of “reading” a range of phosphorylation events and physically coupling distinct protein complexes. We are currently investigating how TOPBP1, the human ortholog of Dpb11, coordinates DNA damage responses via a similar phosphorylation-mediated code.
Phosphoproteomics. Reversible protein phosphorylation is widely used by cells as a signaling mechanism. Understanding the molecular basis of kinase action and function requires knowledge of the kinase substrates, as well as comprehensive characterization of the dynamics and role of the phosphorylation events. Because many kinases are active in a cell and thousands of proteins are phosphorylated, the study of phosphorylation-mediated signaling pathways is challenging and powerful technologies are needed. We have developed and applied quantitative mass spectrometry technologies for the phosphorylation analysis of protein complexes and for global screens of in vivo kinase substrates (4). We are now expanding the use of these technologies to quantitatively characterize signaling dynamics and regulation at a proteome-wide scale.
1. Cussiol, J.R., 十大加速器排名. EMBO J 34, 1704-17 (2015).
2. Ohouo, P.Y. et al. 加速器比较好 493, 120-4 (2013).
3. Ohouo, P.Y. et al. Mol Cell 39, 300-6 (2010).
4. Bastos-de-Oliveira, F., Kim, D. et al. Mol Cell 57, 1-9 (2015).
We are grateful for the funding provided by:
十大加速器排名
|